

Exhibit D

**Supplemental
Public Correspondence Received
as of January 15, 2026**

Dear Chair Wahl, Commission Members, Director Cobert

My name is Tom Rumreich and I am a member of the Oregon Angler Alliance (OAA). We are a group of dedicated Oregonians who promote fish for fisheries because of the benefit to communities and the substantial economic impact that fishing creates. As you know, fishing in Oregon is \$1.5 billion a year industry.

Beginning in 1981, volunteers and Oregon Department of Fish and Wildlife (ODFW) staff began restoring the Chinook population in the Coquille Watershed. This restoration effort incorporated a combination of stream habitat improvement projects, hatchbox fry, and full term smolt releases from department hatcheries. Through our efforts, the population of Chinook in the watershed increased three-fold. In 2010, the number of naturally produced Chinook spawning in the Coquille Watershed was over 32,000. The hatchery smolt release were confined to the lower river and a substantial fishery was created in that reach of the river targeting those returning hatchery Chinook. In the area around the Sevenmile Creek acclimation site an average 40 percent of the Chinook harvested were hatchery fish. The Coquille Chinook restoration efforts were a tremendous success.

As you also know, concurrent to our Chinook restoration efforts, smallmouth bass were illegally introduced into the watershed. Smallmouth bass were first discovered in the watershed in the late 1980's. A period of atypically low rainfall caused elevated stream temperatures throughout the watershed in the years between 2010 and 2020 which facilitated the population expansion of not only the smallmouth bass, but the non-native striped bass as well. Striped bass were first released into San Fransico Bay in 1890 and migrated north over the years. The first striped bass was discovered in the Coquille Watershed in 1914. The population of striped bass in the Coquille Watershed has been variable in the last century.

In recent years extensive efforts have been made to recover the Chinook population in the Coquille. The recovery effort has focused on removal of both the smallmouth and the striped bass from the watershed. Fish cultural efforts have also been employed to aid in the recovery of the Chinook. Fry releases from hatchboxes and a conservation hatchery smolt program have been the two tools used to achieve this goal. The broodstock for the conservation hatchery program are from naturally produced Chinook adults that are collected in the basin. Unfortunately, the number of naturally produced Chinook in the watershed is so low that the collection of enough broodstock to achieve the production goal has been extremely difficult.

There is a successful hatchery Chinook program where smolts are being released from Bandon Hatchery that has sufficient broodstock returning annually to supplement the conservation hatchery program. The Chinook utilized at Bandon Hatchery are from native Coquille River broodstock. The proposal before the ODFW Commission is to utilize some hatchery Chinook to backfill the Conservation Hatchery Program. This proposal has merit in that the funding and space is available at a department hatchery to rear the full allocation of Chinook destined for release into the upper watershed of the Coquille. Making certain that the program goal is achieved when not enough naturally produced broodstock is collected is logical.

Increasing the number of Chinook in the upper watershed is critical to the hope of recovering this population. The naturally produced Chinook population in the Coquille need time to adapt to the new invasive species in the watershed. Research on the Coquille Watershed has documented that there are five basic life history pattern types that are present in each population. The term "life history" relates to the migration pattern of a fish for its entire life. In this context, life history pattern type is based on the length of residence in freshwater. Type one life history pattern are Chinook juveniles that emerge from the gravel and move immediately to the estuary. The type three life history pattern are juvenile Chinook that spend a few months in freshwater and then migrate to the estuary. Prior to the introduction of smallmouth bass, type three was the dominant life history pattern. The type five life history pattern are yearling Chinook that spend an entire year in fresh water before migrating to a marine environment. This is the same life history pattern of the coho in the Coquille and their population has not experienced the same decline as the Chinook. The yearling life history for the Chinook in the Coquille previously composed a small percentage of the population. Based on recent scale analysis, juvenile Chinook that migrate as yearlings are becoming a larger percent of the overall population. Chinook that migrate as yearlings reside in the upper watershed and migrate to the ocean on spring high water events and are not as susceptible to predation by non-native fish.

In conclusion, it is imperative that every possible tool is used to augment the population of Chinook in the upper Coquille Watershed so that this population has the time to adapt through the natural selection process if there is any hope of salvaging this magnificent fish that has been spawning in the river since time in memorial.

Sincerely

Tom Rumreich

Executive Director Oregon Angler Alliance